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Abstract

The dynamics of a vapor bubble between its liquid phase and a heated plate is studied in relation to the breakdown and recovery of
the film boiling. By examining the expansion and the contraction of the vapor bubble the film boiling and transition boiling states are
predicted. Conservation laws in the vapor, solid, and liquid phases are invoked along with fully nonlinear, coupled, free boundary con-
ditions. These coupled system of equations are reduced to a single evolution equation for the local thickness of the vapor bubble by using
a long-wave asymptotics, which is then solved numerically to yield the transient motion of the vapor bubble. Of the numerous parameters
involved in this complex phenomenon we focus on the effects of the degree of superheat from the solid plate, that of the supercooling
through the liquid, and the wetting/dewetting characteristics of the liquid on the solid plate. A material property of the substrate thus is
incorporated into the criteria for the film boiling based on hydrodynamic models.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When a pool of liquid is heated from below beyond a
critical temperature, a complex sequence of boiling phe-
nomena occurs as the superheat is increased. The states
are usually classified as natural convection, nucleate boil-
ing, transition boiling, and film boiling in the order they
appear as the heating intensity is increased, and have been
studied intensively, as reviewed by Rohsenow [13] and Dhir
[5] and in a monograph by Carey [3] among many others.

When the superheat is sufficient, the film-boiling state is
reached, where the liquid is no longer in contact with the
heated bottom, but is separated by a continuous film of
the vapor. Film boiling has been relatively amenable to
more straightforward studies, as discussed in the aforemen-
tioned reviews.

An important parameter used to characterize boiling is
the superheat, the difference between the solid temperature
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and the saturation temperature. The saturation tempera-
ture is the liquid–vapor equilibrium temperature corre-
sponding to the ambient saturation pressure. Another
important parameter is the subcooling, the difference
between the saturation temperature and the ambient liquid
temperature far from the film. These two parameters are
easily controlled in experiments and characterize the differ-
ent regimes of pool boiling. For small superheat, liquid
covers the entire heating surface, and vapor bubbles are
only produced at isolated points on the surface. As the
superheat is increased, patches of vapor cover portions of
the heating surface while other portions are still wetted
by the liquid in a process known as transition boiling. Coa-
lescence of these vapor patches into a continuous film at a
higher superheat gives rise to the onset of the film boiling.
One of the more important tasks subject to further discus-
sions in the study of boiling is an accurate assessment of
the critical heat flux for the film boiling.

The experimental data of Witte and Lienhard [15] on the
film boiling show that the onset of film boiling depends on
the wetting characteristics of the liquid on the solid surface.
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Nomenclature

a(t) contact line location
B ratio of gravity to surface tension
d initial thickness of bubble
Dq ratio of vapor density to liquid density
Dl ratio of vapor viscosity to liquid viscosity
Dj ratio of vapor thermal diffusivity to liquid ther-

mal diffusivity
E evaporation number
g gravitational acceleration
J mass transfer through liquid–vapor interface
k thermal conductivity
K ratio of a typical evaporation rate for a film

thickness to the absolute rate of evaporation at
the saturated temperature

L dimensionless L

L latent heat
~n normal vector
P Prandtl number
R Reynolds number for vapor
~t tangential vector
t time
TL liquid temperature
TS solid plate temperature
TSAT saturated temperature of liquid
TSUB subcooling temperature
TSUP superheated temperature

V(u,w) velocity vector
x horizontal coordination
z vertical coordination
ZL distance from the solid plate to liquid far from

the bubble
ZS solid plate thickness
0 dimensional parameters

Greek symbols

b dimensionless wavenumber
Cj ratio of vapor thermal diffusivity to solid ther-

mal diffusivity
h solid plate temperature
H contact angle
q vapor density
l vapor viscosity
� ratio of initial bubble thickness to its radius
h film thickness

Superscript

ˆ liquid phase

Subscripts

L liquid phase
S solid phase

Vapor

Vapor

Liquid

Liquid

UNSTABLE

Heat Flux

Evaporation

Heat Flux

Fig. 1. Configuration for film boiling and transition boiling.
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The minimum-heat-flux point is found to decrease as the
advancing contact angle increases. This suggests that inter-
mittent liquid–solid contact occurs even in film boiling. The
increased heat transfer at the wetted portion of the heating
surface may quickly evaporate the liquid and return the
system to the film-boiling state, or the liquid may spread
across the surface and bring the system into the transi-
tion-boiling regimes. The effect of the liquid–solid contact
line is investigated in this study. Stability analysis ([12],
for example) of the vapor–liquid interface in film boiling
also shows a spontaneous incipient rupture process of the
vapor film. The liquid, upon touching the bottom (vapor-
film rupture), may either spread (toward transition boiling)
or vaporize (toward film boiling), depending upon the com-
petitive effects of evaporation and feeding from the liquid
bulk above. The dynamics of the wetting/dewetting pro-
cess, or the liquid/solid contact, near the onset of film boil-
ing again is an important subject for investigation.

Anderson and Davis [1] formulated a new contact-line
condition based on a mass balance across the evaporating
interface, and he assumed that the relation between the
macroscopic contact angle and the fluid velocity at the con-
tact line is approximately given by its non-evaporative
form. The lack of direct experimental observations of the
fluid velocity at the contact line when evaporation is pres-
ent hinders the use of an empirical relation that includes
evaporative effects.

Fig. 1 illustrates a possible scenario for switching
between the film and the transition boiling. The liquid
above the vapor in a film boiling state may touch the
heated substrate near the critical heat flux, generating a ser-
ies of vapor bubbles separated by the liquid. If the heat flux
from below is large enough, the vapor bubbles will expand
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to coalesce with each other. The liquid will then be dis-
placed back to be separated from the substrate; the film
boiling state is recovered. Below a critical heat flux the
evaporation from the liquid to vapor bubbles is insufficient
to make them grow; the film boiling state is broken. In this
study, we focus on one such bubble, and determine the con-
ditions for its expansion and contraction. The criteria for
the onset of film boiling thus is further revealed.
2. Formulation

2.1. Modeling a vapor bubble

A two-dimensional vapor bubble lies on a heated solid
plate as shown in Fig. 2. The heated plate supplies heat flux
to the liquid and the vapor. The vapor bubble is sur-
rounded by the liquid and stays symmetric. The solid plate
maintains a constant temperature T 0S, above the saturation
temperature of the liquid T 0SAT. At a distance Z 0L above the
solid plate the liquid temperature is controlled at T 0L, below
the saturated temperature. The liquid–vapor interface is
taken as z0 ¼ h0ðx0; t0Þ, where h0 is a single-valued function
of horizontal position x0 and time t0. The liquid and vapor
are both treated as incompressible Newtonian fluids with
constant material properties. The temperature of the solid
is denoted by h0. Since the liquid–vapor interface is a free
surface, the film thickness h0 is unknown a priori. J0 is the
mass flux across the liquid–vapor interface due to evapora-
tion. Finally, H0 is a contact angle against the solid plate
and the edge of liquid–vapor interface. Normal vector
and tangential vector at the liquid–vapor interface can be
shown in the following equations.

~n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02x0

q ðh0x0 ;�1Þ; ~t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02x0

q ð1; h0x0 Þ: ð1Þ

In Fig. 2 the direction toward the vapor is positive. Contact-
line location at which the liquid–vapor interface meets solid
plate is chosen by x0 ¼ a0ðt0Þ. Three phases, solid, liquid and
vapor, are coupled dynamically, forming a multi-phase and
free-boundary problem with moving vapor–liquid interface,
which is a function of location x0 and time t0, and the mov-
ing contact line, a function of time t0. To solve the problem,
we consider mass, momentum, and energy conservation for
the liquid and vapor and energy conservation for the solid
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Fig. 2. Configuration for a vapor bubble on a heated solid.
plate. Boundary conditions are rather involved in this com-
plex problem, and are discussed below [6–11].

2.2. Dimensionless governing equations

We scale the governing system using the initial thickness
of the bubble d and the static pressure difference Dqgd,
where g is the gravity acceleration, and Dq ¼ qL � q is
the difference between the liquid and the vapor density. A
typical velocity scale gd2Dq=l is formed by balancing pres-
sure and viscous forces in the vapor film, where l is the
vapor viscosity. The time scale l=gdDq is found by dividing
the length scale by the velocity scale. The dimensionless
temperature is obtained by subtracting the saturated tem-
perature T 0SAT from the dimensional temperature and then
dividing by the saturated temperature. For the evaporation
flux, the energy balance at the interface is scaled by
kDT 0SUP=dL, where DT 0SUP ¼ T 0S � T 0SAT, L is latent heat.
Here the prime (0) denotes dimensional quantities. V(u,w)
is the velocity vector, where the hat (^) is used for liquid
phase. The temperature field in the solid phase is denoted
by h.

Dimensionless length scales are then written as

x ¼ 1

d
x0; z ¼ 1

d
z0; h ¼ 1

d
h0; a ¼ 1

d
a0: ð2Þ

Dimensionless time, mass flux, and contact angel are
shown as, respectively,

t ¼ gdDq
l

t0; J ¼ dL

kDT 0SUP

J 0; H ¼ H0: ð3Þ

Dimensionless velocity, temperature and pressure are

V ¼ l

gd2Dq
V 0; p ¼ p0 þ qgz0

Dqgd
; T ¼ T 0 � T 0SAT

T 0SAT

; ð4Þ

for the vapor and

bV ¼ l

gd2Dq
bV 0; p̂ ¼ p̂bV þ qLgz0

Dqgd
; T ¼

bT bV � T 0SAT

T 0SAT

; ð5Þ

for the liquid. For the solid we have

h ¼ h0 � T 0SAT

T 0SAT

: ð6Þ

With the above dimensionless variables, the continuity
equations for vapor and liquid are written as

ux þ wz ¼ 0; ð7Þ
ûx þ ŵz ¼ 0: ð8Þ

Horizontal and vertical components of the dimensionless
momentum equation in the vapor phase are

Rðut þ uux þ wuzÞ ¼ �px þ uxx þ uzz ¼ 0; ð9Þ
Rðwt þ uwx þ wwzÞ ¼ �pz þ wxx þ wzz ¼ 0; ð10Þ

where R ¼ qDqgd3=l2 is Reynolds number for vapor
phase.
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Horizontal and vertical components of the dimension-
less momentum equation in the liquid phase are

RD�1
q ðût þ ûûx þ ŵûzÞ ¼ �p̂x þ D�1

l ðûxx þ ûzzÞ ¼ 0; ð11Þ
RD�1

q ðŵt þ ûŵx þ ŵŵzÞ ¼ �p̂z þ D�1
l ðŵxx þ ŵzzÞ ¼ 0; ð12Þ

where Dq ¼ q=qL is the ratio of vapor density to liquid den-
sity, and Dl ¼ l=lL is the ratio of the vapor to the liquid
viscosity.

Dimensionless energy equations for vapor, liquid and
solid are, respectively,

RP ðT t þ uT x þ wT zÞ ¼ T xx þ T zz; ð13Þ
RPDjðbT t þ ûbT x þ ŵbT zÞ ¼ bT xx þ bT zz; ð14Þ
RPCjht ¼ hxx þ hzz; ð15Þ

where P ¼ l=qj is Prandtl number, Dj ¼ j=jL is the ratio
of the vapor to the liquid thermal diffusivity, and
Cj ¼ j=jS is the ratio of the vapor to the solid thermal
diffusivity.

2.3. Dimensionless boundary conditions

The temperature at the bottom side of the solid plate
z ¼ �zS is kept constant, so that

h ¼ DT SUP; ð16Þ

where DT SUP ¼ DT 0SUP=T 0SAT is the dimensionless superheat,
and zS is the dimensionless thickness of the solid plate.

At the solid–vapor interface z ¼ 0, the Navier slip
model, no-penetration condition, continuous temperature,
and the continuous heat flux are taken as, respectively,

u ¼ b
h

uz; w ¼ 0; h ¼ T ; CkT z ¼ hz; ð17Þ

where the slip coefficient is very small. Ck is the ratio of the
heat conductivity for the solid to that for the liquid.

A constant temperature condition is imposed at z ¼ zL

to implement the subcooling, so that

bT ¼ �DT SUB; ð18Þ

where T SUB ¼ DT 0SUB=T 0SAT is the dimensionless subcooling.
At the liquid–vapor interface z ¼ hðx; tÞ dimensionless

boundary conditions for mass conservation, energy conser-
vation, the equilibrium of normal stress and shear stress,
continuous tangential velocity, continuous temperature
and mass flux are imposed, as explained by Delhaye [4],
Burelbach and Bankoff [2], and Panzarella et al. [12].

The conservation of mass for the vapor and the liquid
phase at the liquid–vapor interface are written as,
respectively,

EDT SUPJ ¼ ðht þ uhx � wÞð1þ h2
xÞ
�1=2

; ð19Þ
EDT SUPDqJ ¼ ðht þ ûhx � ŵÞð1þ h2

xÞ
�1=2

; ð20Þ

where the evaporation number E ¼ klT 0SAT=qDqLgd3 is the
ratio of viscosity to evaporative time.
The conservation of energy at the liquid–vapor interface
is

DT SUPJ þ
E2DT 3

SUPð1�D2
qÞJ 3

2L
þ T z� T xhx�D�1

k ðbT z � bT xhxÞ
ð1þ h2

xÞ
1=2

þ 2DT SUPJ

LRð1þ h2
xÞ

�
hxðuzþwxÞ � ðh2

x � 1Þux

�Dq

Dl
ððûzþ ŵxÞ � ðh2

x � 1ÞûxÞ
�
¼ 0; ð21Þ

where Dk ¼ k=kL is the ratio of the vapor to the liquid ther-
mal conductivity, and L ¼ Ll2=d4g2ðDqÞ2 is dimensionless
latent heat. The first term in Eq. (21) is the energy required
for evaporation, the second is the change of kinetic energy
of the evaporating liquid molecules, the third is the net heat
flux due to conduction, and the fourth is due to viscous
dissipation.

The normal-stress condition is

EDT 3
SUPRðDq � 1ÞJ 2 þ p̂ � p � h

� 2

Dqð1þ h2
xÞ
ðh2

x � 1Þûx � hxðûz þ ŵxÞ
� �

þ 2

1þ h2
x

ðh2
x � 1Þux � hxðuz þ wxÞ

� �
¼ hxx

Bð1þ h2
xÞ

3=2
; ð22Þ

where B ¼ d2Dqg=r is the ratio of gravity to surface ten-
sion force. If we consider the variation of surface tension
due to temperature change, a thermocapillary parameter
would appears in the left-side of Eq. (22), as in the work
by Panzarella et al. [12]. The first term in Eq. (22) is due
to vapor recoil (launching of the evaporating molecules
with huge density jump across the interface), the forth term
is due to hydrostatic pressure, and the term on the right-
hand-side of the equation is due to capillary pressure.

The shear-stress boundary condition is

ð1�h2
xÞðuzþwxÞ�4hxux�D�1

l ½ð1�h2
xÞðûzþ ŵxÞ�4hxûx� ¼ 0;

ð23Þ
and the continuity of tangential interfacial velocities
requires

u� ûþ hxðw� ŵÞ ¼ 0: ð24Þ
The temperature across the evaporating interface is
continuous

T ¼ bT ; ð25Þ
and a linear relationship between the dimensionless tem-
perature and the rate of evaporation is assumed to write

KDT SUPJ ¼ T ; ð26Þ
where K ¼ kð8RgT 03SATp�1m�3Þ1=2

=dp0SATL2 is the ratio of a
typical evaporation rate for a film of thickness d to the
absolute rate of evaporation at the saturation temperature.
Here m is the moral mass of the vapor molecules, Rg is the
ideal gas constant, and p0SAT is the equilibrium vapor pres-
sure at the temperature T 0SAT. A non-equilibrium evapora-
tion equation for the interface, where both evaporation
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and condensation occur, was derived by Schrage [14], and
is linearized to Eq. (26), as discussed by Panzarella et al.
[12]. Here T ¼ 0 and J ¼ 0 depicts an equilibrium state,
T > 0 and J > 0 the evaporation, and T < 0 and J < 0
the condensation.

The conditions at the solid–vapor–liquid interface.
called contact-line, are required. We assume that the vapor
bubble is symmetric, and use the symmetry and the
smoothness condition at x ¼ 0 as
hx ¼ 0; hxxx ¼ 0 at x ¼ 0: ð27Þ
The condition of contact, the condition of contact angle,
and the constitutive equation between contact angle and
contact-line are written as

h ¼ 0; hx ¼ tan H at x ¼ aðtÞ; ð28Þ
da
dt
¼ EDT SUP

JðaÞ
sin H

� aðH�HcÞ; ð29Þ
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Fig. 3. Evolution of a bubble when Q ¼ 0, B ¼ 1, b ¼ 10�6 and a ¼
where a is a measurable quantity, and JðaÞ is evaporative
rate at the contact line.

Finally, the global mass balance is written asZ a

0

ðht � E � DT SUP � JÞdx ¼ 0; ð30Þ

which provides the kinematics of the interface in the pres-
ence of the mass flux across the interface.
3. Evolution equation

3.1. Lubrication approximation

We assume that � ¼ d=a0, the ratio of initial bubble
thickness to its radius, is small, and apply the lubrication
approximation. Details for the derivation of the evolution
are given in the work by Panzarella et al. [12]. Interested
readers may follow the analysis by noting that in the
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0:1. (a) Hc ¼ p=4; (b) Hc ¼ p=2; (c) Hc ¼ 3p=4; (d) Hc ¼ 7p=8.
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present study we take Dl ¼ � �Dl, which gives zero shear
stress on the vapor–liquid interface.

New spatial and temporal variables are introduced as
X ¼ �x, Z ¼ �1=2z, f ¼ �z and s ¼ �3t=3, and all variables
except the local bubble thickness h are expanded in power
series for �. The asymptotic expansions consistent with
above assumption for vapor are

uðX ; Z; sÞ ¼ �u0ðX ; Z; sÞ þOð�2Þ; ð31Þ
wðX ; Z; sÞ ¼ �2w0ðX ; Z; sÞ þOð�3Þ; ð32Þ
pðX ; Z; sÞ ¼ p0ðX ; Z; sÞ þOð�Þ; ð33Þ
T ðX ; Z; sÞ ¼ �T 0ðX ; Z; sÞ þOð�2Þ; ð34Þ

and those for liquid are

ûðX ; f; sÞ ¼ �2û0ðX ; f; sÞ þOð�3Þ; ð35Þ
ŵðX ; f; sÞ ¼ �2ŵ0ðX ; f; sÞ þOð�3Þ; ð36Þ
p̂ðX ; f; sÞ ¼ �p̂0ðX ; f; sÞ þOð�2Þ: ð37Þ
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Fig. 4. Evolution of a bubble when H ¼ 0:1, Hc ¼ 3p=4, B ¼ 1, b ¼ 10�6,
The asymptotic expansions for the liquid and the solid tem-
perature are

bT ðX ; Z; sÞ ¼ �bT 0ðX ; Z; sÞ þOð�2Þ; ð38Þ
hðX ; Z; sÞ ¼ �h0ðX ; Z; sÞ þOð�2Þ: ð39Þ

The asymptotic expansion for the mass flux is

JðX ; sÞ ¼ J 0ðX ; sÞ þOð�Þ; ð40Þ
and that for the contact angle is

UðsÞ ¼ �U0ðsÞ þOð�2Þ; ðH ¼ p� UÞ: ð41Þ
3.2. Evolution equation

The governing equations and the boundary conditions
can be solved sequentially by substituting the above expan-
sions and reodering the terms in like order. Substituting
some leading-order solutions into the mass-conservation
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K ¼ 10 and a ¼ 0:1. (a) Q ¼ 0:1; (b) Q ¼ 0:2; (c) Q ¼ 0:3; (d) Q ¼ 0:4.
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requirement results in a single, strongly-nonlinear evolu-
tion equation satisfied by the local vapor bubble
thickness h,

hs ¼ Q
1� h=H

hþ K
� hX þ

1
�B

hXXX

� �
ðh3 þ bhÞ

� �
X

: ð42Þ

The first term in the right-hand side of Eq. (42) represents
evaporative mass loss, and the second term describes mass
flux due to gravity and surface tension. The modified slip
coefficient is so small ð� 10�6Þ that it can be taken as
b ¼ b and the Bond number is B ¼ B=�2. This equation is
almost identical to that derived by Panzarella et al. [12]
except for the form of the slip-condition term. Q is now
positive because the direction of evaporation is reversed
from that of Burelbach and Bankoff [2], and the buoyancy
term changes sign because the roles of liquid and vapor are
interchanged. The surface tension term remains the same
because a negative film curvature increases the local film
pressure regardless of its phase. Thus, even though this
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Fig. 5. Evolution of a bubble when H ¼ 1:0, Hc ¼ 3p=4, B ¼ 1, b ¼ 10�6,
equation resembles those used previously to study liquid
film, the nature of its solutions can be quite different.

The parameter Q in Eq. (42) is

Q ¼ 3EBðDkzLDT SUP � CkzSDT SUBÞ
BðK þ DkzLÞ

; ð43Þ

which is directly proportional to subcooling or superheat,
and measures the degree of heating from the solid plate.
When Q ¼ 0, the subcooling or superheat does not exist.

The parameter H in Eq. (42) is

H ¼ DkzL
DT SUP

DT SUB

� CkzS; ð44Þ

which depends on the ratio of superheat and subcooling,
and if DT SUB !1, H ! 0. It thus measures the degree
of subcooling.

The parameter K in Eq. (42) is

K ¼ ðCkzS þ DkzLÞK þ DkCkzLzS

K þ DkzL
; ð45Þ
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K ¼ 10 and a ¼ 0:1. (a) Q ¼ 0:1; (b) Q ¼ 0:3; (c) Q ¼ 0:5; (d) Q ¼ 1:0.



2564 S.W. Joo, M.S. Park / International Journal of Heat and Mass Transfer 50 (2007) 2557–2570
which accounts for the degree of non-equilibrium at
the evaporating interface and the thermal resistance at
the solid plate.

4. Numerical analysis

The evolution equation, a fourth-order nonlinear partial
differential equation, is solved numerically with appropri-
ate boundary conditions. The symmetry and smoothness
condition at the center of the bubble are now

hX ¼ 0; hXXX ¼ 0 at X ¼ 0; ð46Þ

and the contact condition and its angle at the contact-line
X ¼ �aðsÞ become

h ¼ 0; hX ¼ tan H at X ¼ �aðsÞ: ð47Þ

The location of the contact-line depends on the time, and
the contact angle changes as the contact-line is moves. A
constitutive equation for of �as is thus required. As Ander-
son and Davis [1] explains, we write
0 2
0

1

2

0 1 2
0
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2

Fig. 6. Evolution of a bubble when H ¼ 0:1, Hc ¼ p=2, B ¼ 1, b ¼ 10�6, K
�as ¼
Jo

sin H
� aðH�HcÞ: ð48Þ

where �a ¼ �a, Jo ¼ Q=K, a ¼ 3=�a, and Hc is the critical
contact angle. The global mass balance [1]Z �a

0

hs � Q
1� h=H

hþ K

� �
dX ¼ 0; ð49Þ

must also be invoked.
Initially the radius of vapor bubble is taken to be unity,

and a quasi-steady state shape for h is assumed:

�að0Þ ¼ 1; hðX ; 0Þ ¼ cos X � cos ð1Þ
sin ð1Þ � cos ð1Þ : ð50Þ

Eq. (50) describes a parabolic shape with an initial contact
angle H0 ¼ 1:9144.

Eq. (42) is a strongly nonlinear partial differential equa-
tion with the boundary conditions Eqs. (46)–(49) and the
initial conditions Eq. (50). The lateral domain changes with
time because the bubble front, or the contact-line location,
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¼ 10 and a ¼ 0:1. (a) Q ¼ 0:1; (b) Q ¼ 0:3; (c) Q ¼ 0:5; (d) Q ¼ 0:7.
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X ¼ aðsÞ depends on the time. The system is solved numer-
ically using a finite-difference method. We begin by map-
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Fig. 7. Evolution of a bubble when H ¼ 100, Hc ¼ p=2, B ¼ 1, b ¼ 10�6,
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ping the time-dependent computational domain into a
fixed one with a change of variables
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T ¼ s; n ¼ 1

aðT ÞX ; Hðn; sÞ ¼ hðX ; T Þ: ð51Þ

The computational domain is then given as 0 6 n 6 1.
Central difference in space is employed, while backward
difference is used in time. The resulting difference equations
are solved by the Newton–Raphson iteration.
5. Results and discussion

5.1. In case of Q ¼ 0

When the superheat is absent ðQ ¼ 0Þ, Eq. (42) is simpli-
fied as

hs ¼ � hX þ
1

B
hXXX

� �
ðh3 þ bhÞ

� �
X

: ð52Þ

We investigate the bubble behavior with B ¼ 1, a ¼ 0:1,
and b ¼ 10�6, which are consistent with pure water.
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Fig. 8. Evolution of a bubble when Q ¼ 0:1, Hc ¼ p=2, B ¼ 1, b ¼ 10�6, K
Fig. 3 shows the evolution of a bubble for four different
values of Hc. When Hc is small as in Fig. 3a, the vapor–
liquid interface near the contact line steepens with time
to recover this small contact angle measured from the li-
quid side. As a result the width of the vapor bubble de-
creases. Although no volume change occurs in the vapor
bubble, we classify this case as contraction of the vapor
bubble. When the critical contact angle is increased to
p/2, the rate of the bubble contraction is substantially
decreased. In both cases the vapor–liquid interface steep-
ens without bound, and the computation has to be ter-
minated before the long-wave approximation used in
deriving the evolution equation is violated. When the crit-
ical contact angle exceeds p/2, an equilibrium state is pos-
sible. Fig. 4c and d show such evolutions. In the cases
shown the vapor bubble stays trapped between the liquid
and the plate, and the Rayleigh–Taylor instability does
not seem to break out for the disturbance wavelength
contained.
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5.2. In case of Q 6¼ 0

The bubble dynamics with evaporation ðQ 6¼ 0Þ is
shown in Figs. 4–8. We investigate the behavior of vapor
bubble for four different value of Q P 0:1, H P 0:1,
0 6 Hc 6 p with K ¼ 10, a and b ¼ 10�6, values consistent
again with pure water. It is to be noted that the increase in
the contact-line location �a results in the expansion of vapor
bubble and so the incipient recovery of the film boiling
state. Its decrease on the other hand would indicate the
evolution toward transition boiling. Through numerous
computations of such cases we can construct an evolution
map in a set of parameter space. In this study, we present
evolution maps on the 1/Q vs. 1/H plane and the 1/Q vs.
1/Hc plane.

5.2.1. 1/Q vs. 1/H plane

Fig. 4 shows the evolution of a vapor bubble for four
different values of Q with H ¼ 0:1, B ¼ 1, K ¼ 10,
b ¼ 10�6, Hc ¼ 3p=4 and a ¼ 0:1, which provides the high
effect of subcooling ðH ¼ 0:1Þ. When the degree of super-
heat is weak ðQ ¼ 0:1Þ, the vapor bubble initially expands
and then contracts, and the thickness of vapor bubble
decreases to a constant value. When the degree of super-
heat is increased ðQ P 0:2Þ, the vapor bubble monoto-
nously expands keeping a constant thickness. The moving
front of the bubble is expected to merge with that from
the neighboring bubble, and the film-boiling state will be
reached. When the degree of superheat is further increased,
the change in the thickness of the expanding bubble does
not seem to be as drastic as that of the speed of the expand-
ing front.

Fig. 5 shows the evolution of a vapor bubble for four
different values of Q with H ¼ 1:0, B ¼ 1, K ¼ 10,
b ¼ 10�6, Hc ¼ 3p=4 and a ¼ 0:1, which provides an
example of moderate subcooling ðH ¼ 1:0Þ. The vapor
bubble eventually expands for all values of Q chosen. How-
ever, significant corrugations appear on the vapor–liquid
interface as Q is increased. As seen in Fig. 5d, the evolution
toward film boiling occurs with a large-amplitude wave
motion on the vapor–liquid interface. It is interesting to
note that the interfacial instability of the vapor–liquid
interface shown bears the possibility of interface rupture
for even weaker subcooling (higher H).

Fig. 6 shows the evolution of a vapor bubble for four
different values of Q with H ¼ 0:1, B ¼ 1, K ¼ 10,
b ¼ 10�6, Hc ¼ p=2 and a ¼ 0:1, which provides the strong
effect of subcooling ðH ¼ 0:1Þ and a different critical angle
ðHc ¼ p=2Þ. The vapor bubble contracts and reaches an
equilibrium state with constant h and �a for Hc < 0:7. When
Hc > 0:7 the vapor bubble appears to expand and reaches
an equilibrium state with constant film thickness, which
shows recovery to the film boiling. There are contraction
or expansion of the vapor bubble depending on the value
of Q. The degree of the contraction appears somewhat sim-
ilar to each other, while the degree of the expansion
appears to increase as Q increases.
Fig. 7 shows the evolution of a vapor bubble for the six
different values of Q with H ¼ 100, B ¼ 1, K ¼ 10, b ¼
10�6, Hc ¼ p=2 and a ¼ 0:1, which provides the high effect
of superheat ðH ¼ 100Þ. Since the effect of superheat is
much stronger than the effect of the subcooling, the dynam-
ics of vapor bubble appears different from that shown in
Fig. 6. When Q is small, the vapor bubble contracts and
then expands, where the range of contraction is wider
than the range of expansion. As Q increases, the contrac-
tion and expansion of vapor bubble also appears. However
the range of contraction becomes small and disappears.
When Q is much larger, the vapor bubble doses not
expand with constant thickness, but vapor–liquid interface
becomes corrugated with a possibility of rupture for high
enough Q.

Fig. 8 shows the evolution of a vapor bubble for four
different values of H with Q ¼ 0:1, B ¼ 1, K ¼ 10,
b ¼ 10�6, Hc ¼ p=2 and a ¼ 0:1. When H is small, the
vapor bubble monotonously contracts until it reaches an
equilibrium. The effect of subcooling makes the vapor bub-
ble to contract until the vapor–liquid interface gets close
enough to the solid plate, where an equilibrium between
these two effects is reached. As H is increased, the range
of contraction becomes small, and the equilibrated vapor
bubble grows in size. With much weaker subcooling, the
initial contraction of the bubble can be followed by subse-
quent expansion.

Fig. 9 shows an evolution map on the 1/Q vs. 1/H plane
for three different values of critical angle Hc. Four different
evolutions of the vapor bubble are indicated, which are
monotonous contraction, contraction–expansion, expan-
sion–contraction, and monotonous expansion. In case
of Hc ¼ 3p=4, the eventual contraction occurs for small
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enough Q and large enough H. The region for the expan-
sion (film boiling) thus is for strong enough superheat
and weak enough subcooling. When Hc ¼ p=2 all four
different behaviors are clearly seen. The map shows the
boundaries for these different evolutions, and can be used
in predicting the transition and film boiling. When
Hc ¼ p=4 the region of contraction dominates in the range
shown in Fig. 9. The regions for contraction–expansion
and expansion–contraction are barely seen in the scale
used. The upper region in-between Line (3) is for expan-
sion–contraction, while the lower region between Line (3)
is for contraction–expansion. It is also noted that the
region for contraction becomes increases, and so that for
expansion decreases, as the critical contact angle is
decreased, which suggests that the recovery to the film
boiling state is more likely with a larger critical angle (less
wetting surface).

5.2.2. 1/Q vs. Hc plane

Fig. 10 shows the evolution of a vapor bubble for six dif-
ferent values of Hc with Q ¼ 0:1, H ¼ 0:1, B ¼ 1, K ¼ 10,
b ¼ 10�6 and a ¼ 0:1. The effects of subcooling and super-
heat are comparable. When the critical contact angle is
small, the vapor bubble contracts, and its thickness
increases. When the critical angle is between p/2 and
5p/8, the vapor bubble contracts, and its thickness
decreases. However, an expansion of the vapor bubble
occurs in Fig. 10d. When the critical angle is even higher,
the range of expansion increases, while the range of con-
traction decreases. The vapor bubble eventually expands
with constant thickness, as shown in Fig. 10e.

Fig. 11 shows another evolution map for the vapor bub-
ble. Four different evolutions are predicted on the 1/Q vs.
Hc plane for different values of H, Q > 0:1, and
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Fig. 11. 1/Q vs. Hc plane for evolution of �a, E: expanding region of the
vapor bubble, C: contracting region of the vapor bubble, C ! E:
expanding region of the vapor bubble after contracting initially, E! C:
contacting region of the vapor bubble after expanding initially. Line (1)
for H ¼ 0:1, Line (2) for H ¼ 0:1; 1; 10; 100 and Line (3) for H ¼ 10; 100.
0 6 Hc 6 p. As H increases, which means the weaker sub-
cooling effect, the region of expansion of vapor bubble
grows, the region of expansion–contraction appears to dis-
appear, and the region of contraction–expansion emerges.
In the region of vapor bubble expansion the rate of �a
increase grows, as the critical angel increases, while in the
region of vapor bubble contraction the rate of �a decrease
grows, as the critical angel decreases.
6. Conclusions

A two-dimensional vapor bubble due to liquid evapora-
tion on a heated solid plate is studied with a focus on the
dynamics of its interface with the vapor phase. the dynam-
ics of bubble is mainly induced by the superheat from the
solid plate, the subcooling from liquid above, and wettabil-
ity of the liquid on the solid plate.

The dynamics of the vapor bubble is investigated by
deriving an evolution equation based on the lubrication the-
ory and a subsequent numerical analysis. Five different
behaviors of vapor bubble are obtained from Eq. (42): (1)
the monotonous expansion of bubble shown in Fig. 4; (2)
the monotonous contraction of bubble shown in Fig. 6a–c;
(3) the contraction–expansion of bubble shown in Fig. 8c,
d; (4) the expansion–contraction of bubble shown in
Fig. 9d, e, and (5) the contraction–equilibrium of bubble
shown in Fig. 6a. Moreover, with the parameter H, account-
ing for the degree of superheat from the solid plate, the
parameter Q, accounting for the degree of supercooling
through liquid, and the parameter Hc, accounting for the
dewetting/wetting characteristics of liquid on the solid plate,
we present maps for these different evolutions on the 1/Q vs.
1/H plane and the 1/Q vs. Hc plane, which can be a useful
guide in the study of the film and the transition boiling.
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